Antibodies against human and bacterial 60kDa heat shock proteins in pregnant women with superimposed preeclampsia

Authors

DOI:

https://doi.org/10.15574/HW.2024.170.44

Keywords:

anti-HSP60 antibodies, anti-GroEL antibodies, heat shock proteins, HSP60, preeclampsia, superimposed preeclampsia, chronic hypertension, pregnancy

Abstract

Purpose - to measure the blood serum levels of anti-HSP60 and anti-GroEL antibodies in pregnant women with chronic hypertension and superimposed preeclampsia, to evaluate the prospects of using these indicators as superimposed preeclampsia predictors.

Materials and methods. Prospective cohort observational study, which consisted of 105 pregnant women with chronic hypertension and the control group - 34 healthy pregnant women. Blood samples were collected at 28 weeks (first study point), the second time at 36 weeks in case of preeclampsia absence or at 29-35 weeks if preeclampsia added (second study point). If preeclampsia occurred after 36 weeks, additional anti-HSP60 and anti-GroEL antibodies measurements were not performed. Anti-HSP60 and anti-GroEL antibodies were measured by immunosorbent assay.

Results. At 28 weeks anti-HSP60 and anti-GroEL antibodies growth was detected in the chronic hypertension and superimposed preeclampsia subgroups compared to the healthy subgroup (p<0.01 and p<0.001 respectively for anti-HSP60; p<0.0001 for anti-GroEL in both cases), no difference was found between chronic hypertension and superimposed preeclampsia subgroups.

At the second study point, anti-HSP60 antibodies were increased in the chronic hypertension and superimposed preeclampsia subgroups compared to the healthy subgroup (p<0.01 and p<0.0001, respectively); a statistically significant difference was found between chronic hypertension and superimposed preeclampsia subgroups (p<0.01). Anti-GroEL antibodies at the second study point were increased in the chronic hypertension and superimposed preeclampsia subgroups compared to the healthy subgroup (p<0.001 and p<0.0001), however, no statistically significant difference was found between levels in the chronic hypertension and superimposed preeclampsia subgroups.

Anti-HSP60 antibodies showed a strong correlation with anti-GroEL antibodies in all subgroups at the first study point, same was true for healthy and chronic hypertension subgroups at the second study point. There was no correlation between anti-HSP60 and anti-GroEL antibodies indicators in the superimposed preeclampsia subgroup at the second study point (p=0.059). There was no growth of anti-GroEL antibodies with gestational age increase in the chronic hypertension subgroup. Anti-HSP60 antibodies increase at the second study point compared to concentrations at 28 weeks in the chronic hypertension subgroup (p<0.001) and the superimposed preeclampsia subgroup (p<0.001).

Conclusions. Loss of immunological tolerance to HSP60 and exacerbation of immunological reactivity against GroEL accompany hypertensive disorders course during pregnancy. Anti-HSP60 antibodies may play a more significant role in superimposed preeclampsia development. Application of anti-HSP60 and anti-GroEL antibodies as superimposed preeclampsia predictors needs further study.

The research was carried out in accordance with the principles of the Helsinki Declaration. The study protocol was approved by the Local Ethics Committee of the participating institution. The informed consent of the patient was obtained for conducting the studies.

No conflict of interests was declared by the authors.

References

ACOG. (2019, Jan). Chronic Hypertension in Pregnancy. American College of Obstetricians and Gynecologists' Committee on Practice Bulletins - Obstetrics. ACOG Practice Bulletin No. 203. Obstet Gynecol. 133(1): e26-e50. https://doi.org/10.1097/AOG.0000000000003020; PMid:30575676

Álvarez-Cabrera MC, Barrientos-Galeana E, Barrera-García A, Osorio-Caballero M, Acevedo JF, Flores-Herrera O et al. (2018, Nov). Secretion of heat shock -60, -70 kD protein, IL-1β and TNFα levels in serum of a term normal pregnancy and patients with pre-eclampsia development. J Cell Mol Med. 22(11): 5748-5752. Epub 2018 Aug 22. https://doi.org/10.1111/jcmm.13824; PMid:30133944 PMCid:PMC6201347

Andrié RP, Bauriedel G, Braun P, Höpp HW, Nickenig G, Skowasch D. (2011, Jun). Prevalence of intimal heat shock protein 60 homologues in unstable angina and correlation with anti-heat shock protein antibody titers. Basic Res Cardiol. 106(4): 657-665. Epub 2011 Mar 18. https://doi.org/10.1007/s00395-011-0171-2; PMid:21416407

Androvitsanea A, Stylianou K, Drosataki E, Petrakis I. (2021, Oct 1). The Pathophysiological Role of Heat Shock Response in Autoimmunity: A Literature Review. Cells. 10(10): 2626. https://doi.org/10.3390/cells10102626; PMid:34685607 PMCid:PMC8533860

Ansari MY, Mande SC. (2018, Apr 11). A Glimpse Into the Structure and Function of Atypical Type I Chaperonins. Front Mol Biosci. 5: 31. https://doi.org/10.3389/fmolb.2018.00031; PMid:29696145 PMCid:PMC5904260

Banecka-Majkutewicz Z, Grabowski M, Kadziński L, Papkov A, Węgrzyn A, Banecki B. (2014). Increased levels of antibodies against heat shock proteins in stroke patients. Acta Biochim Pol. 61(2): 379-383. Epub 2014 Jun 6. https://doi.org/10.18388/abp.2014_1910; PMid:24904931

Bodolay E, Prohászka Z, Paragh G, Csipő I, Nagy G, Laczik R et al. (2014, Oct). Increased levels of anti-heat-shock protein 60 (anti-Hsp60) indicate endothelial dysfunction, atherosclerosis and cardiovascular diseases in patients with mixed connective tissue disease. Immunol Res. 60(1): 50-59. https://doi.org/10.1007/s12026-014-8552-x; PMid:24838263

Bounds KR, Newell-Rogers MK, Mitchell BM. (2015, Apr 28). Four Pathways Involving Innate Immunity in the Pathogenesis of Preeclampsia. Front Cardiovasc Med. 2: 20. https://doi.org/10.3389/fcvm.2015.00020; PMid:26664892 PMCid:PMC4671354

Chan CT, Lieu M, Toh BH, Kyaw TS, Bobik A, Sobey CG, Drummond GR. (2014). Antibodies in the pathogenesis of hypertension. Biomed Res Int. 2014: 504045. Epub 2014 Jun 23. https://doi.org/10.1155/2014/504045; PMid:25050352 PMCid:PMC4090532

Chang X, Shi X, Zhang X, Chen J, Fan X, Yang Y et al. (2020, Mar). miR-382-5p promotes porcine reproductive and respiratory syndrome virus (PRRSV) replication by negatively regulating the induction of type I interferon. FASEB J. 34(3): 4497-4511. Epub 2020 Feb 10. https://doi.org/10.1096/fj.201902031RRR; PMid:32037657

Conde-Agudelo A, Romero R. (2022, Jan). SARS-CoV-2 infection during pregnancy and risk of preeclampsia: a systematic review and meta-analysis. Am J Obstet Gynecol. 226(1): 68-89.e3. Epub 2021 Jul 21. https://doi.org/10.1016/j.ajog.2021.07.009; PMid:34302772 PMCid:PMC8294655

De Lima Filho JB, Freire L, Nahas EAP, Orsatti FL, Orsatti CL. (2020, Jun 12). Heat Shock Protein 60 Antibodies Are Associated with a Risk Factor for Cardiovascular Disease in Bedridden Elderly Patients. Front Mol Biosci. 7: 103. https://doi.org/10.3389/fmolb.2020.00103; PMid:32613007 PMCid:PMC7307547

Duan Y, Tang H, Mitchell-Silbaugh K, Fang X, Han Z, Ouyang K. (2020, Apr 30). Heat Shock Protein 60 in Cardiovascular Physiology and Diseases. Front Mol Biosci. 7: 73. https://doi.org/10.3389/fmolb.2020.00073; PMid:32426370 PMCid:PMC7203681

Easter SR, Cantonwine DE, Zera CA, Lim KH, Parry SI, McElrath TF. (2016, Mar). Urinary tract infection during pregnancy, angiogenic factor profiles, and risk of preeclampsia. Am J Obstet Gynecol. 214(3): 387.e1-7. Epub 2015 Oct 9. https://doi.org/10.1016/j.ajog.2015.09.101; PMid:26450405

Erez O, Romero R, Jung E, Chaemsaithong P, Bosco M, Suksai M et al. (2022, Feb). Preeclampsia and eclampsia: the conceptual evolution of a syndrome. Am J Obstet Gynecol. 226(2S): S786-S803. https://doi.org/10.1016/j.ajog.2021.12.001; PMid:35177220 PMCid:PMC8941666

Fan F, Duan Y, Yang F, Trexler C, Wang H, Huang L et al. (2020, Feb). Deletion of heat shock protein 60 in adult mouse cardiomyocytes perturbs mitochondrial protein homeostasis and causes heart failure. Cell Death Differ. 27(2): 587-600. Epub 2019 Jun 17. https://doi.org/10.1038/s41418-019-0374-x; PMid:31209364 PMCid:PMC7205885

Frostegård J, Lemne C, Andersson B, van der Zee R, Kiessling R, de Faire U. (1997, Jan). Association of serum antibodies to heat-shock protein 65 with borderline hypertension. Hypertension. 29; 1 Pt 1: 40-44. https://doi.org/10.1161/01.HYP.29.1.40; PMid:9039077

George EM. (2014, Dec 1). New approaches for managing preeclampsia: clues from clinical and basic research. Clin Ther. 36(12): 1873-1881. Epub 2014 Nov 20. https://doi.org/10.1016/j.clinthera.2014.09.023; PMid:25450475 PMCid:PMC4268345

George EM. (2017. Feb 1). The disease of theories: unravelling the mechanisms of pre-eclampsia. Biochem (Lond). 39 (1): 22-25. https://doi.org/10.1042/BIO03901022

Grundtman C, Kreutmayer SB, Almanzar G, Wick MC, Wick G. (2011, May). Heat shock protein 60 and immune inflammatory responses in atherosclerosis. Arterioscler Thromb Vasc Biol. 31(5): 960-968. https://doi.org/10.1161/ATVBAHA.110.217877; PMid:21508342 PMCid:PMC3212728

Gundagurti B, Dasari P, Singh R. (2021, Nov 17). Association of Chlamydophila pneumoniae infection and hypertension during pregnancy - A case control study. Clin Exp Hypertens. 43(8): 793-799. Epub 2021 Aug 25. https://doi.org/10.1080/10641963.2021.1969661; PMid:34433341

Gundagurti B, Dasari P, Singh R. (2021, Nov 17). Association of Chlamydophila pneumoniae infection and hypertension during pregnancy - A case control study. Clin Exp Hypertens. 43(8): 793-799. Epub 2021 Aug 25. https://doi.org/10.1080/10641963.2021.1969661; PMid:34433341

Horváth L, Cervenak L, Oroszlán M, Prohászka Z, Uray K, Hudecz F et al. (2002, Mar 1). Antibodies against different epitopes of heat-shock protein 60 in children with type 1 diabetes mellitus. Immunol Lett. 80(3): 155-162. https://doi.org/10.1016/S0165-2478(01)00336-4; PMid:11803047

Hovsieiev DO, Pohribna AP, Pohribnyi PV, Martych AM, Berestovyi VO, Sokol IV. (2023). Test-systema imunofermentna dlia vyznachennia rivnia imunohlobuliniv klasu G v syrovatkakh krovi liudyny do antyhenu eukariotnoho bilka HSP60. Patent na korysnu model No. 152536 vid 08.03.2023.

Hovsieiev DO, Pohribna AP, Pohribnyi PV, Martych AM, Berestovyi VO, Sokol IV. (2023). Test-systema imunofermentna dlia vyznachennia rivnia imunohlobulinv klasu G v syrovatkakh krovi liudyny do antyhenu prokariotnoho bilka GroEL. Patent na korysnu model No. 152535 vid 08.03.2023.

Hromadnikova I, Dvorakova L, Kotlabova K, Kestlerova A, Hympanova L, Novotna V et al. (2015, Mar). Assessment of placental and maternal stress responses in patients with pregnancy related complications via monitoring of heat shock protein mRNA levels. Mol Biol Rep. 42(3): 625-637. Epub 2014 Oct 31. https://doi.org/10.1007/s11033-014-3808-z; PMid:25359312

Hu C, Yang J, Qi Z, Wu H, Wang B, Zou F et al. (2022, Aug 2). Heat shock proteins: Biological functions, pathological roles, and therapeutic opportunities. MedComm (2020). 3(3): e161. https://doi.org/10.1002/mco2.161; PMid:35928554 PMCid:PMC9345296

Ishida R, Okamoto T, Motojima F, Kubota H, Takahashi H, Tanabe M et al. (2018, Feb 6). Physicochemical Properties of the Mammalian Molecular Chaperone HSP60. Int J Mol Sci. 19(2): 489. https://doi.org/10.3390/ijms19020489; PMid:29415503 PMCid:PMC5855711

Jakovac H. (2020, Oct 1). COVID-19 and hypertension: is the HSP60 culprit for the severe course and worse outcome? Am J Physiol Heart Circ Physiol. 319(4): H793-H796. Epub 2020 Sep 4. https://doi.org/10.1152/ajpheart.00506.2020; PMid:32886002 PMCid:PMC7516379

Jung E, Romero R, Yeo L, Gomez-Lopez N, Chaemsaithong P, Jaovisidha A et al. (2022, Feb). The etiology of preeclampsia. Am J Obstet Gynecol. 226(2S): S844-S866. https://doi.org/10.1016/j.ajog.2021.11.1356; PMid:35177222 PMCid:PMC8988238

Junho CVC, Azevedo CAB, da Cunha RS, de Yurre AR, Medei E, Stinghen AEM, Carneiro-Ramos MS. (2021, Jul 30). Heat Shock Proteins: Connectors between Heart and Kidney. Cells. 10(8): 1939. https://doi.org/10.3390/cells10081939; PMid:34440708 PMCid:PMC8391307

Kampinga HH, Hageman J, Vos MJ, Kubota H, Tanguay RM, Bruford EA et al. (2009, Jan). Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones. 14(1): 105-111. Epub 2008 Jul 29. https://doi.org/10.1007/s12192-008-0068-7; PMid:18663603 PMCid:PMC2673902

Kervinen H, Huittinen T, Vaarala O, Leinonen M, Saikku P, Manninen V, Mänttäri M. (2003, Aug). Antibodies to human heat shock protein 60, hypertension and dyslipidemia. A study of joint effects on coronary risk. Atherosclerosis. 169(2): 339-344. https://doi.org/10.1016/S0021-9150(03)00229-6; PMid:12921987

Kimura T, Tse K, Sette A, Ley K. (2015, May). Vaccination to modulate atherosclerosis. Autoimmunity. 48(3): 152-160. Epub 2015 Feb 16. https://doi.org/10.3109/08916934.2014.1003641; PMid:25683179 PMCid:PMC4429861

Krishnan-Sivadoss I, Mijares-Rojas IA, Villarreal-Leal RA, Torre-Amione G, Knowlton AA, Guerrero-Beltrán CE. (2021, Jan). Heat shock protein 60 and cardiovascular diseases: An intricate love-hate story. Med Res Rev. 41(1): 29-71. Epub 2020 Aug 17. https://doi.org/10.1002/med.21723; PMid:32808366 PMCid:PMC9290735

Kumar S, O'Malley J, Chaudhary AK, Inigo JR, Yadav N, Kumar R, Chandra D. (2019, Nov). Hsp60 and IL-8 axis promotes apoptosis resistance in cancer. Br J Cancer. 121(11): 934-943. Epub 2019 Nov 1. https://doi.org/10.1038/s41416-019-0617-0; PMid:31673102 PMCid:PMC6889399

Landstein D, Ulmansky R, Naparstek Y. (2015, Oct 20). HSP60: a double edge sword in autoimmunity. Oncotarget. 6(32): 32299-32300. https://doi.org/10.18632/oncotarget.5869; PMid:26431161 PMCid:PMC4741687

Le QA, Akhter R, Coulton KM, Vo NTN, Duong LTY, Nong HV et al. (2022, Dec). Periodontitis and Preeclampsia in Pregnancy: A Systematic Review and Meta-Analysis. Matern Child Health J. 26(12): 2419-2443. Epub 2022 Oct 8. https://doi.org/10.1007/s10995-022-03556-6; PMid:36209308 PMCid:PMC9747857

Liu D, Han X, Zhang Z, Tse G, Shao Q, Liu T. (2022, Dec 30). Role of Heat Shock Proteins in Atrial Fibrillation: From Molecular Mechanisms to Diagnostic and Therapeutic Opportunities. Cells. 12(1): 151. https://doi.org/10.3390/cells12010151; PMid:36611952 PMCid:PMC9818491

Malik JA, Lone R. (2021, Oct). Heat shock proteins with an emphasis on HSP 60. Mol Biol Rep. 48(10): 6959-6969. Epub 2021 Sep 8. https://doi.org/10.1007/s11033-021-06676-4; PMid:34498161

McClung DM, Kalusche WJ, Jones KE, Ryan MJ, Taylor EB. (2021, Feb). Hypertension and endothelial dysfunction in the pristane model of systemic lupus erythematosus. Physiol Rep. 9(3): e14734. https://doi.org/10.14814/phy2.14734; PMid:33527772 PMCid:PMC7851437

Molvarec A, Derzsy Z, Kocsis J, Boze T, Nagy B, Balogh K et al. (2009, Sep). Circulating anti-heat-shock-protein antibodies in normal pregnancy and preeclampsia. Cell Stress Chaperones. 14(5): 491-498. Epub 2009 Feb 11. https://doi.org/10.1007/s12192-009-0102-4; PMid:19205928 PMCid:PMC2728282

Monreal-Flores J, Espinosa-García MT, García-Regalado A, Arechavaleta-Velasco F, Martínez F. (2017, Jun). The heat shock protein 60 promotes progesterone synthesis in mitochondria of JEG-3 cells. Reprod Biol. 17(2): 154-161. Epub 2017 Apr 20. https://doi.org/10.1016/j.repbio.2017.04.001; PMid:28434777

Mukherjee I, Singh S, Karmakar A, Kashyap N, Mridha AR, Sharma JB et al. (2023, Feb). New immune horizons in therapeutics and diagnostic approaches to Preeclampsia. Am J Reprod Immunol. 89(2): e13670. Epub 2023 Jan 2. https://doi.org/10.1111/aji.13670; PMid:36565013

Netyazhenko VZ, Bozhko LI, Gidzinska IM, Volobueva ZV, Klymenko LV, Korzh OM et al. (2017, Aug). Evidence-based clinical guideline Arterial hypertension. State expert center Ministry of health of Ukraine. Electronic resource. URL: https://www.dec.gov.ua/wp-content/uploads/2019/11/kn_artergipert.pdf.

Nourollahpour Shiadeh M, Behboodi Moghadam Z, Adam I, Saber V, Bagheri M, Rostami A. (2017, Oct). Human infectious diseases and risk of preeclampsia: an updated review of the literature. Infection. 45(5): 589-600. Epub 2017 Jun 2. https://doi.org/10.1007/s15010-017-1031-2; PMid:28577241

Olvera-Sanchez S, Espinosa-Garcia MT, Monreal J, Flores-Herrera O, Martinez F. (2011, Mar). Mitochondrial heat shock protein participates in placental steroidogenesis. Placenta. 32(3): 222-229. Epub 2011 Jan 12. https://doi.org/10.1016/j.placenta.2010.12.018; PMid:21232789

Patnaik S, Nathan S, Kar B, Gregoric ID, Li YP. (2023, May 27). The Role of Extracellular Heat Shock Proteins in Cardiovascular Diseases. Biomedicines. 11(6): 1557. https://doi.org/10.3390/biomedicines11061557; PMid:37371652 PMCid:PMC10295776

Peracoli JC, Bannwart-Castro CF, Giorgi VS, Weel IC, Romao M, Witkin SS et al. (2012, Jul). PP061. The role of heat shock protein 60 and 70 in early- and late-onset preeclampsia differentiation. Pregnancy Hypertens. 2(3): 275. Epub 2012 Jun 13. PMID: 26105384. https://doi.org/10.1016/j.preghy.2012.04.172

Pitz Jacobsen D, Fjeldstad HE, Johnsen GM, Fosheim IK, Moe K, Alnæs-Katjavivi P et al. (2021, Dec 14). Acute Atherosis Lesions at the Fetal-Maternal Border: Current Knowledge and Implications for Maternal Cardiovascular Health. Front Immunol. 12: 791606. https://doi.org/10.3389/fimmu.2021.791606; PMid:34970270 PMCid:PMC8712939

Pockley AG, De Faire U, Kiessling R, Lemne C, Thulin T, Frostegård J. (2002, Sep). Circulating heat shock protein and heat shock protein antibody levels in established hypertension. J Hypertens. 20(9): 1815-1820. https://doi.org/10.1097/00004872-200209000-00027; PMid:12195124

Popel O, Govsieiev D. (2023). What is in common between preeclampsia, HSP70 and medieval headwear? Part І. Serum HSP70 in preeclampsia: systematic review and meta-analysis. Reproductive heals of woman. 7: 34-48. https://doi.org/10.30841/2708-8731.7.2023.292599

Popel O, Govsieiev D. (2024). What is in common between preeclampsia, HSP70 and medieval headwear? Part ІІ. Serum HSP70 in superimposed preeclampsia: original study. Reproductive heals of woman. (1). https://doi.org/10.30841/2708-8731.7.2023.292599

Robellada-Zárate CM, Luna-Palacios JE, Caballero CAZ, Acuña-González JP, Lara-Pereyra I, González-Azpeitia DI et al. (2023, May). First-trimester plasma extracellular heat shock proteins levels and risk of preeclampsia. J Cell Mol Med. 27(9): 1206-1213. Epub 2023 Mar 31. https://doi.org/10.1111/jcmm.17674; PMid:37002651 PMCid:PMC10148059

Rodríguez-Iturbe B, Johnson RJ. (2018, Mar 1). Heat shock proteins and cardiovascular disease. Physiol Int. 105(1): 19-37. https://doi.org/10.1556/2060.105.2018.1.4; PMid:29602292

Sadov'yak ID, Artyomenko VV, Dubossarska YO, Zhilka NY, Zhuk SI, Kaminsky VV et al. (2021, Jan 24). Evidence-based clinical guideline. Hypertensive disorders in pregnant women. State expert center Ministry of health of Ukraine. Electronic resource. URL: https://www.dec.gov.ua/wp-content/uploads/2022/01/2022_151_kn_giprozlvagitn.pdf.

Saha A, Ahmed S. (2023). The Link Between Heat Shock Proteins, Renin-Angiotensin System, and the Coagulation Cascade in the Pathogenesis of the Coronavirus-19 Disease. Adv Exp Med Biol. 1409: 161-171. https://doi.org/10.1007/5584_2022_735; PMid:35882774

Veres A, Szamosi T, Ablonczy M, Szamosi T Jr, Singh M, Karádi I et al. (2002, Jun). Complement activating antibodies against the human 60 kDa heat shock protein as a new independent family risk factor of coronary heart disease. Eur J Clin Invest. 32(6): 405-410. https://doi.org/10.1046/j.1365-2362.2002.01007.x; PMid:12059985

Wick C. (2016, Mar). Tolerization against atherosclerosis using heat shock protein 60. Cell Stress Chaperones. 21(2): 201-211. Epub 2015 Nov 17. https://doi.org/10.1007/s12192-015-0659-z; PMid:26577462 PMCid:PMC4786533

Wick G, Jakic B, Buszko M, Wick MC, Grundtman C. (2014, Sep). The role of heat shock proteins in atherosclerosis. Nat Rev Cardiol. 11(9): 516-529. Epub 2014 Jul 15. https://doi.org/10.1038/nrcardio.2014.91; PMid:25027488

Yakovenko LF, Smalyuk YV, Kapustyan LM, Chornyy SA, Pogrebnaya AP, Granich VN et al. (2015, Apr-Jun). ANTI-Hsp60 antibodies in arterial hypertention diferent degree of severity. Lik Sprava. (3-4): 43-52. PMID: 26827438. https://doi.org/10.31640/LS-2015-(3-4)-06

Yan L, Jin Y, Hang H, Yan B. (2018, Sep). The association between urinary tract infection during pregnancy and preeclampsia: A meta-analysis. Medicine (Baltimore). 97(36): e12192. https://doi.org/10.1097/MD.0000000000012192; PMid:30200124 PMCid:PMC6133609

Zhang X, Yu W. (2022, Aug 5). Heat shock proteins and viral infection. Front Immunol. 13: 947789. https://doi.org/10.3389/fimmu.2022.947789; PMid:35990630 PMCid:PMC9389079

Zininga T, Ramatsui L, Shonhai A. (2018, Nov 1). Heat Shock Proteins as Immunomodulants. Molecules. 23(11): 2846. https://doi.org/10.3390/molecules23112846; PMid:30388847 PMCid:PMC6278532

Zonnar S, Saeedy SAG, Nemati F, Motamedi MJ, Raeespour H, Amani J. (2022, Jan). Decrescent role of recombinant HSP60 antibody against atherosclerosis in high-cholesterol diet immunized rabbits. Iran J Basic Med Sci. 25(1): 32-38. doi: 10.22038/IJBMS.2021.56382.12580. PMID: 35656453; PMCID: PMC9118271.

Published

2024-02-28