Indicators of rotational thromboelastometry in preterm delivery

Authors

DOI:

https://doi.org/10.15574/HW.2024.171.77

Keywords:

premature birth, premature newborn, hemostasis in vessels of the umbilical cord, hemostasis in parturition, fibrinogen, rotational thromboelastometry

Abstract

Disrupted maternal, placental, and/or fetal hemostasis leads to gestational disorders, including preterm birth (PR). A quick and convenient assessment of the coagulation profile is important for a premature newborn.

Aim - to compare the indicators of hemostasis in mothers and newborns with different gestational ages using rotational thromboelastometry.

Materials and methods. The study analyzed the indicators of the hemostatic profile in women in labor and their newborns using the fib-tem test on the ROTEM® delta device. Three groups of mothers and their newborns were studied: the Group I - at a gestation period of 37-41 weeks, the Group II - 28-34 weeks, the Group III - 22-27 weeks.

Results. In the Group III prematures, blood clotting time (257.1±87.29ʺ) is longer than that of the Group I - 43.3±21.48ʺ and the Group II - 52.5±25.03ʺ. Angle α is larger in the Group I and the Group II - 47.6±12.49; 79.9±4.62; 76.7±4.84 (degrees). Amplitudes of contraction (5, 10 min, maximum) of the Group II are lower than the Group I by 10-22%. In the Group III, the amplitudes correlate with the concentration of fibrinogen up to 2 g/l - 4.6±1.39; 8.0±3.00; 7.9±5.56 (mm). The smallest lysis in the Group III (1.8±2.38%) versus the Group I and the Group II (17.1±2.34%, 8.1±2.50%. Maternal indicators of the amplitude of the coagulation are higher at a shorter gestational age.

Conclusions. Maternal indicators of the amplitude of coagulation exceed the indicators of newborns by 1.5-2 times - 18.8±7.89 versus 17.4±7.04; 22.0±3.34 vs. 15.2±11.37 and 20.8±9.22 vs. 7.9±5.56 (mm). Blood clotting time of extremely premature newborns (257.1±87.29ʺ s) is longer than that of full-term and moderately premature infants (43.3±21.48ʺ; 52.5±25.03ʺ). Amplitudes of contractions of newborns of the Group III at the 5th minute are three times smaller, and at the 10th minute they are twice as small as in the Group I and the Group II - 4.6±1.39; 13.2±3.34; 16.2±5.38 (mm) and 8.0±3.01; 15.5±4.34; 16.0±7.39 (mm). In the Group III, coagulation lysis is minimal (1.8±2.38% vs. 17.1±2.34%; 8.1±2.50%).

The research was carried out in accordance with the principles of the Helsinki Declaration. The study protocol was approved by the Local Ethics Committee of the participating institution. The informed consent of the patient was obtained for conducting the studies.

The authors declare no conflict of interest.

References

Abdollahi A, Sheikhbahaei S, Hafezi-Nejad N, Mahdaviani B. (2014, Apr). Hemostatic profile in healthy premature neonates; does birth weight affect the coagulation profile? J Clin Neonatol. 3(2): 89-92. https://doi.org/10.4103/2249-4847.134679; PMid:25024974 PMCid:PMC4089134

Amelio GS, Provitera L, Raffaeli G, Tripodi M, Amodeo I, Gulden S et al. (2022). Endothelial dysfunction in preterm infants: The hidden legacy of uteroplacental pathologies. Front Pediatr. 4 (10): 1041919. https://doi.org/10.3389/fped.2022.1041919; PMid:36405831 PMCid:PMC9671930

Amelio GS, Raffaeli G, Amodeo I, Gulden S, Cortesi V, Manzoni F et al. (2022, May 10). Hemostatic Evaluation With Viscoelastic Coagulation Monitor: A Nicu Experience. Front Pediatr. 10: 910646. https://doi.org/10.3389/fped.2022.910646; PMid:35620150 PMCid:PMC9127261

De Vries JJ, Veen CSB, Snoek CJM, Kruip MJHA, de Maat MPM. (2020, Nov). FIBTEM clot firmness parameters correlate well with the fibrinogen concentration measured by the Clauss assay in patients and healthy subjects. Scand J Clin Lab Invest. 80(7): 600-605. https://doi.org/10.1080/00365513.2020.1818283; PMid:32924629

Drotarova M, Zolkova J, Belakova KM, Brunclikova M, Skornova I et al. (2023, Oct 16). Basic Principles of Rotational Thromboelastometry (ROTEM®) and the Role of ROTEM-Guided Fibrinogen Replacement Therapy in the Management of Coagulopathies. Diagnostics (Basel). 13(20): 3219. https://doi.org/10.3390/diagnostics13203219; PMid:37892040 PMCid:PMC10606358

Edwards RM, Naik-Mathuria BJ, Gay AN, Olutoye OO, Teruya J. (2008, Jul). Parameters of thromboelastography in healthy newborns. Am J Clin Pathol. 130(1): 99-102. https://doi.org/10.1309/LABNMY41RUD099J2; PMid:18550478

Fiol AG, Yoo J, Yanez D, Fardelmann KL, Salimi N, Alian M et al. Mancini P, Alian A. (2023, Jun 8). Baseline rotational thromboelastometry (ROTEM) values in a healthy, diverse obstetric population and parameter changes by pregnancy-induced comorbidities. Proc (Bayl Univ Med Cent). 36(5): 562-571. https://doi.org/10.1080/08998280.2023.2217534; PMid:37614857 PMCid:PMC10443986

Harr JN, Moore EE, Chin TL, Chapman MP, Ghasabyan A, Stringham JR et al. (2015, Feb). Viscoelastic hemostatic fibrinogen assays detect fibrinolysis early. Eur J Trauma Emerg Surg. 41(1): 49-56. https://doi.org/10.1007/s00068-014-0400-0; PMid:26038165 PMCid:PMC5810948

Hartmann J, Hermelin D, Levy JH. (2022, Dec 27). Viscoelastic testing: an illustrated review of technology and clinical applications. Res Pract Thromb Haemost. 7(1): 100031. https://doi.org/10.1016/j.rpth.2022.100031; PMid:36760779 PMCid:PMC9903681

Hellgren M. (2003, Apr). Hemostasis during normal pregnancy and puerperium. Semin Thromb Hemost. 29(2): 125-130. https://doi.org/10.1055/s-2003-38897; PMid:12709915

Hochart A, Nuytten A, Pierache A, Bauters A, Rauch A, Wibaut B et al. (2019, Aug 28). Hemostatic profile of infants with spontaneous prematurity: can we predict intraventricular hemorrhage development? Ital J Pediatr. 45(1): 113. https://doi.org/10.1186/s13052-019-0709-8; PMid:31455409 PMCid:PMC6712596

Huissoud C, Carrabin N, Benchaib M, Fontaine O, Levrat A, Massignon D et al. (2009, Apr). Coagulation assessment by rotation thrombelastometry in normal pregnancy. Thromb Haemost. 101(4): 755-761. https://doi.org/10.1160/TH08-06-0386; PMid:19350122

Iwaki T, Castellino FJ. (2005, Aug). Maternal fibrinogen is necessary for embryonic development. Curr Drug Targets. 6(5):535-539. https://doi.org/10.2174/1389450054546006; PMid:16026273

Jaiman S, Romero R, Pacora P, Erez O, Jung E, Tarca AL et al. (2021, Jan 13). Disorders of placental villous maturation are present in one-third of cases with spontaneous preterm labor. J Perinat Med. 49(4): 412-430. https://doi.org/10.1515/jpm-2020-0138; PMid:33554577 PMCid:PMC8324068

Katsaras GΝ, Sokou R, Tsantes AG, Piovani D, Bonovas S, Konstantinidi A et al. (2021, Dec). The use of thromboelastography (TEG) and rotational thromboelastometry (ROTEM) in neonates: a systematic review. Eur J Pediatr. 180(12): 3455-3470. https://doi.org/10.1007/s00431-021-04154-4; PMid:34131816

Kontovazainitis CG, Gialamprinou D, Theodoridis T, Mitsiakos G. (2024). Hemostasis in Pre-Eclamptic Women and Their Offspring: Current Knowledge and Hemostasis Assessment with Viscoelastic Tests. Diagnostics (Basel). 14(3): 347. https://doi.org/10.3390/diagnostics14030347; PMid:38337863 PMCid:PMC10855316

Leush S, Protsyk M. (2023). Hemostasis in vessels of the umbilical cord in premature and extremely premature newborns. Ukrainian Journal Health of Woman. 4(167): 35-39. https://doi.org/10.15574/HW.2023.167.35

Roberts JC, Javed MJ, Lundy MK, Burns RM, Wang H, Tarantino MD. (2022, Aug). Characterization of laboratory coagulation parameters and risk factors for intraventricular hemorrhage in extremely premature neonates. J Thromb Haemost. 20(8): 1797-1807. https://doi.org/10.1111/jth.15755; PMid:35524764 PMCid:PMC9543331

Warren BB, Moyer GC, Manco-Johnson MJ. (2023, Jun). Hemostasis in the Pregnant Woman, the Placenta, the Fetus, and the Newborn Infant. Semin Thromb Hemost. 49(4): 319-329. https://doi.org/10.1055/s-0042-1760332; PMid:36750218

Ye Y, Vattai A, Zhang X, Zhu J, Thaler CJ, Mahner S et al. (2017, Jul 29). Role of Plasminogen Activator Inhibitor Type 1 in Pathologies of Female Reproductive Diseases. Int J Mol Sci. 18(8): 1651. https://doi.org/10.3390/ijms18081651; PMid:28758928 PMCid:PMC5578041

Zhai J, Li Z, Zhou Y, Yang X. (2022, Mar). The role of plasminogen activator inhibitor-1 in gynecological and obstetrical diseases: An update review. J Reprod Immunol. 150: 103490. https://doi.org/10.1016/j.jri.2022.103490; PMid:35121287

Published

2024-03-30