Some aspects of the pathogenesis of placenta accreta spectrum (PAS): pathohistology, molecular mechanisms and biomarkers (literature review)

Authors

DOI:

https://doi.org/10.15574/HW.2025.1(176).8398

Keywords:

pregnancy, placenta accreta spectrum, histopathology, screening, biomarkers

Abstract

Aim - to study the current state of the pathogenesis of abnormal placental invasion, existing scientific research and potential future ways of predicting and screening for abnormal placental invasion in pregnant women.

To identify relevant information on placenta accreta spectrum (PAS) for the review, a database of modern scientific literature (2014–2024) was analyzed namely, from such scientific-metric databases as Scopus, PubMed, Google Scholar and the Web of Science databases. This review is to analyze the current literature on the molecular mechanisms and pathological signaling pathways associated with PAS. We assessed the state of the available data on the role of some proteins, chemokines and other biomarkers of trophoblastic invasion. In addition, we reviewed the data on the participation of epigenetic modifications and genes in key regulatory processes of trophoblastic invasion, including apoptosis, cell proliferation, invasion and inflammation.

Conclusion: Investigation of signaling pathways involved in the pathogenesis of PAS may provide valuable tools for the development of targeted therapies. Therapeutic strategies targeting these pathways may potentially inhibit abnormal placental invasion and angiogenesis.

The authors declare no conflict of interest.

Author Biography

D.O. Govsieiev, Bogomolets National Medical University, Kyiv

Perinatal Center of Kyiv, Ukraine

References

Abdel-Hamid AAM, Mesbah Y, Soliman MFM, Firgany AEL. (2024). Dominance of Pro-Inflammatory Cytokines Over Anti-Inflammatory Ones in Placental Bed of Creta Cases. J. Microsc. Ultrastruct. 12: 14-20. https://doi.org/10.4103/jmau.jmau_76_21; PMid:38633568 PMCid:PMC11019593

Arakaza A, Liu X, Zhu J, Zou L. (2024). Assessment of serum levels and placental bed tissue expression of IGF-1, bFGF, and PLGF in patients with placenta previa complicated with placenta accreta spectrum disorders. J. Matern.-Fetal Neonatal Med. 37: 2305264. https://doi.org/10.1080/14767058.2024.2305264; PMid:38247274

Bailit JL, Grobman WA, Rice MM et al. (2015). Morbidly adherent placenta treatments and outcomes. Obstetrics & Gynecology. 125(3): 683-689. https://doi.org/10.1097/AOG.0000000000000680; PMid:25730233 PMCid:PMC4347990

Barrett SL, Bower C, Hadlow NC. (2008). Use of the combined first-trimester screen result and low PAPP-A to predict risk of adverse fetal outcomes. Prenatal Diagnosis. 28(1): 28-35. https://doi.org/10.1002/pd.1898; PMid:18186146

Bartels HC, Downey P, Brennan DJ. (2024, Jul). Looking back to look forward: Has the time arrived for active management of obstetricians in placenta accreta spectrum? International Journal of Gynecology & Obstetrics. 168(1): 48-56. https://doi.org/10.1002/ijgo.15826; PMid:39045676 PMCid:PMC11649868

Bartels HC, Postle JD, Downey P, Brennan DJ. (2018). Placenta Accreta Spectrum: A Review of Pathology, Molecular Biology, and Biomarkers. Dis. Markers. 2018: 1507674. https://doi.org/10.1155/2018/1507674; PMid:30057649 PMCid:PMC6051104

Berezowsky A, Pardo J, Ben-Zion M, Wiznitzer A, Aviram A. (2019). Second Trimester Biochemical Markers as Possible Predictors of Pathological Placentation: A Retrospective Case-Control Study. Fetal Diagn. Ther. 46: 187-192. https://doi.org/10.1159/000492829; PMid:30726846

Betrán AP, Ye J, Moller AB, Zhang J, Gulmezoglu AM, Torloni MR. (2016). The Increasing Trend in Caesarean Section Rates: Global, Regional and National Estimates: 1990-2014. PLoS ONE. 11: e0148343. https://doi.org/10.1371/journal.pone.0148343; PMid:26849801 PMCid:PMC4743929

Bowman ZS, Eller AG, Bardsley TR, Greene T, Varner MW, Silver RM. (2014). Risk factors for placenta accreta: A large prospective cohort. Am. J. Perinatol. 31: 799-804. https://doi.org/10.1055/s-0033-1361833; PMid:24338130

Büke B, Akkaya H, Demir S, Sağol S, Şimşek D et al. (2018, Jan). Relationship between first trimester aneuploidy screening test serum analytes and placenta accreta. J Matern Fetal Neonatal Med. 31(1): 59-62. Epub 2017 Jan 17. https://doi.org/10.1080/14767058.2016.1275546; PMid:28027672

Cahill AG, Beigi R, Heine P, Silver RM, Wax JR. (2018). Obstetric Care Consensus No. 7: Placenta Accreta Spectrum. Obstet.Gynecol. 132: e259-e275. https://doi.org/10.1097/AOG.0000000000002983

Cal G, D'Antonio F, Forlani F, Timor-Tritsch IE, Palacios-Jaraquemada JM. (2017). Ultrasound Detection of Bladder-Uterovaginal Anastomoses in Morbidly Adherent Placenta. Fetal Diagn. Ther. 41: 239-240. https://doi.org/10.1159/000445055; PMid:27160715

Cao C, Li J, Li J, Liu L, Cheng X, Jia R. (2017). Long Non-Coding RNA Uc.187 Is Upregulated in Preeclampsia and Modulates Proliferation, Apoptosis, and Invasion of HTR-8/SVneo Trophoblast Cells. J. Cell. Biochem. 118: 1462-1470. https://doi.org/10.1002/jcb.25805; PMid:27883216

Chandra S, Scott H, Dodds L, Watts C, Blight C, Van Den Hof M. (2003). Unexplained elevated maternal serum α-fetoprotein and/or human chorionic gonadotropin and the risk of adverse outcomes. American Journal of Obstetrics & Gynecology. 189(3): 775-781. https://doi.org/10.1067/S0002-9378(03)00769-5; PMid:14526312

Cheng SB, Nakashima A, Huber WJ, Davis S, Banerjee S, Huang Z et al. (2019). Pyroptosis is a critical inflammatory pathway in the placenta from early onset preeclampsia and in human trophoblasts exposed to hypoxia and endoplasmic reticulum stressors. Cell Death Dis. 10: 927. https://doi.org/10.1038/s41419-019-2162-4; PMid:31804457 PMCid:PMC6895177

Chen P-S, Su J-L, Hung M-C. (2012). Dysregulation of MicroRNAs in cancer. J. Biomed. Sci. 19: 90. https://doi.org/10.1186/1423-0127-19-90; PMid:23075324 PMCid:PMC3482395

Chen Y, Zhang H, Han F et al. (2018). The depletion of MARVELD1 leads to murine placenta accreta via integrin β4-dependent trophoblast cell invasion. Journal of Cellular Physiology. 233: 2257-2269. https://doi.org/10.1002/jcp.26098; PMid:28708243

Cole LA. (2010). Biological functions of hCG and hCG-related molecules," Reproductive Biology and Endocrinology. 8(1): 102. https://doi.org/10.1186/1477-7827-8-102; PMid:20735820 PMCid:PMC2936313

Conover CA. (2012). Key questions and answers about pregnancyassociated plasma protein-A. Trends in Endocrinology and Metabolism. 23(5): 242-249. https://doi.org/10.1016/j.tem.2012.02.008; PMid:22463950 PMCid:PMC3348390

Costa SL, Proctor L, Dodd JM et al. (2008). Screening for placental insufficiency in high-risk pregnancies: is earlier better? Placenta. 29(12): 1034-1040. https://doi.org/10.1016/j.placenta.2008.09.004; PMid:18930542

Desai N, Krantz D, Roman A, Fleischer A, Boulis S, Rochelson B. (2014). Elevated first trimester PAPP-A is associated with increased risk of placenta accreta. Prenatal Diagnosis. 34(2): 159-162. https://doi.org/10.1002/pd.4277; PMid:24226752

Dreux S, Salomon LJ, Muller F et al. (2012). Second-trimester maternal serum markers and placenta accreta. Prenatal Diagnosis. 32(10): 1010-1012. https://doi.org/10.1002/pd.3932; PMid:22729439

Duan L, Schimmelmann M, Wu Y, Reisch B, Faas M, Kimmig R et al. (2020). CCN3 Signaling Is Differently Regulated in Placental Diseases Preeclampsia and Abnormally Invasive Placenta. Front. Endocrinol. 11: 597549. https://doi.org/10.3389/fendo.2020.597549; PMid:33304321 PMCid:PMC7701218

Dugoff L. (2010). First- and second-trimester maternal serum markers for aneuploidy and adverse obstetric out-comes. Obstetrics and Gynecology. 115(5): 1052-1061. https://doi.org/10.1097/AOG.0b013e3181da93da; PMid:20410782

Dugoff L, Hobbins JC, Malone FD et al. (2004). First-trimester maternal serum PAPP-A and free-beta subunit human chorionic gonadotropin concentrations and nuchal translucency are associated with obstetric complications: a populationbased screening study (The FASTER Trial). American Journal of Obstetrics & Gynecology. 191(4): 1446-1451. https://doi.org/10.1016/j.ajog.2004.06.052; PMid:15507981

Duzyj CM, Buhimschi IA, Motawea H et al. (2015). The invasive phenotype of placenta accreta extravillous trophoblasts associate with loss of E-cadherin. Placenta. 36(6): 645-651. https://doi.org/10.1016/j.placenta.2015.04.001; PMid:25904157

El Behery MM, Etewa Rasha L, El Alfy Y. (2010). Cell-free placental mRNA in maternal plasma to predict placental invasion in patients with placenta accreta. International Journal of Gynecology & Obstetrics. 109(1): 30-33. https://doi.org/10.1016/j.ijgo.2009.11.013; PMid:20070963

Ernst LM, Linn RL, Minturn L, Miller ES. (2017). Placental pathologic associations with morbidly adherent placenta potential insights into pathogenesis. Paediatric pathology society. 20: 5. https://doi.org/10.1177/1093526617698600; PMid:28812469

Faraji A, Akbarzadeh-Jahromi M, Bahrami S, Gharamani S, Raeisi Shahraki H et al. (2022). Predictive value of vascular endothelial growth factor and placenta growth factor for placenta accreta spectrum. J. Obstet. Gynaecol. 42: 900-905. https://doi.org/10.1080/01443615.2021.1955337; PMid:34558384

Fitzpatrick KE, Sellers S, Spark P, Kurinczuk JJ, Brocklehurst P, Knight M. (2014). The management and outcomes of placenta accreta, increta, and percreta in the UK: a population-based descriptive study. BJOG: An International Journal of Obstetrics & Gynaecology. 121(1): 62-71. https://doi.org/10.1111/1471-0528.12405; PMid:23924326 PMCid:PMC3906842

Geffen T, Gal H, Vainer I et al. (2018). Senescence and telomere homeostasis might be involved in placenta percreta - preliminary investigation. Reproductive Sciences. 25(8): 1254-1260. Epub 2017 Nov 6. https://doi.org/10.1177/1933719117737852; PMid:29108468

Gualdoni G, Gomez Castro G, Hernández R, Barbeito C, Cebral E. (2022). Comparative matrix metalloproteinase-2 and -9 expression and activity during endotheliochorial and hemochorial trophoblastic invasiveness. Tissue and Cell. 74: 101698. https://doi.org/10.1016/j.tice.2021.101698; PMid:34871824

Gu Y, Bian Y, Xu X, Wang X, Zuo C, Meng J et al. (2016). Downregulation of miR-29a/b/c in placenta accreta inhibits apoptosis of implantation site intermediate trophoblast cells by targeting MCL1. Placenta. 48: 13-19. https://doi.org/10.1016/j.placenta.2016.09.017; PMid:27871464

Gu Y, Meng J, Zuo C, Wang S, Li H, Zhao S et al. (2019). Downregulation of MicroRNA-125a in Placenta Accreta Spectrum Disorders Contributes Antiapoptosis of Implantation Site Intermediate Trophoblasts by Targeting MCL1.Reprod. Sci. 26: 1582-1589. https://doi.org/10.1177/1933719119828040; PMid:30782086

Ha M, Kim VN. (2014). Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol. 15: 509-524. https://doi.org/10.1038/nrm3838; PMid:25027649

Hanahan D, Weinberg RA. (2011). Hallmarks of cancer: the next generation. Cell. 144(5): 646-674. https://doi.org/10.1016/j.cell.2011.02.013; PMid:21376230

Han Q, Zheng L, Liu Z, Luo J, Chen R, Yan J. (2019). Expression of β-catenin in human trophoblast and its role in placenta accreta and placenta previa. J. Int. Med. Res. 47: 206-214. https://doi.org/10.1177/0300060518799265; PMid:30465458 PMCid:PMC6384477

Hecht JL, Baergen R, Ernst LM, Katzman PJ, Jacques SM, Jauniaux E et al. (2020). Classification and reporting guidelines for the pathology diagnosis of placenta accreta spectrum (PAS) disorders: Recommendations from an expert panel. Mod. Pathol. 33: 2382-2396. https://doi.org/10.1038/s41379-020-0569-1; PMid:32415266

Heidari S, Kolahdouz-Mohammadi R, Khodaverdi S, Tajik N, Delbandi A-A. (2021). Expression levels of MCP-1, HGF, and IGF-1 in endometriotic patients compared with non-endometriotic controls. BMC Women's Health. 21: 422. https://doi.org/10.1186/s12905-021-01560-6; PMid:34930225 PMCid:PMC8686524

He L, Hannon GJ. (2004). MicroRNAs: Small RNAs with a big role in gene regulation. Nat. Rev. Genet. 5: 522-531. https://doi.org/10.1038/nrg1379; PMid:15211354

He Y, Ding Y, Liang B, Lin J, Kim TK, Yu H et al. (2017). A Systematic Study of Dysregulated MicroRNA in Type 2Diabetes Mellitus. Int. J. Mol. Sci. 18: 456. https://doi.org/10.3390/ijms18030456; PMid:28264477 PMCid:PMC5372489

Higgins M, Monteith C, Foley M, O'Herlihy C. (2013). Real increasing incidence of hysterectomy for placenta accreta following previous caesarean section. European Journal of Obstetrics & Gynecology, and Reproductive Biology. 171(1): 54-56. https://doi.org/10.1016/j.ejogrb.2013.08.030; PMid:24157231

Hung TH, Shau WY, Hsieh CC, Chiu TH, Hsu JJ, Hsieh TT. (1999). Risk factors for placenta accreta. Obstetrics & Gynecology. 93(4): 545-550. https://doi.org/10.1097/00006250-199904000-00015; PMid:10214831

Illsley NP, Da Silva-Arnold SC, Zamudio S, Alvarez M, Al-Khan A. (2020). Trophoblast invasion: Lessons from abnormally invasive placenta (placenta accreta). Placenta. 102: 61-66. https://doi.org/10.1016/j.placenta.2020.01.004; PMid:33218581 PMCid:PMC7680503

Jabrane-Ferrat N, Siewiera J. (2014). The up side of decidual natural killer cells: new developments in immunology of pregnancy. Immunology. 141(4): 490-497. https://doi.org/10.1111/imm.12218; PMid:24256296 PMCid:PMC3956423

Jauniaux E, Chantraine F, Silver RM, Langhoff-Roos J. (2018). FIGO consensus guidelines on placenta accreta spectrum disorders: Epidemiology. Int. J. Gynecol. Obstet. 140: 265-273. https://doi.org/10.1002/ijgo.12407; PMid:29405321

Jauniaux E, Jurkovic D. (2012). Placenta accreta: Pathogenesis of a 20th century iatrogenic uterine disease. Placenta. 33: 244-251. https://doi.org/10.1016/j.placenta.2011.11.010; PMid:22284667

Kannampuzha S, Ravichandran M, Mukherjee AG, Wanjari UR, Renu K, Vellingiri B et al. (2022). The mechanism of action of non-coding RNAs in placental disorders. Biomed. Pharmacother. 156: 113964. https://doi.org/10.1016/j.biopha.2022.113964; PMid:36411641

Kawashima A, Sekizawa A, Ventura W, Koide K, Hori K Okai T, Masashi Y et al. (2014). Increased levels of cell-free human placental lactogen mRNA at 28-32 gestational weeks in plasma of pregnant women with placenta previa and invasive placenta. Reprod. Sci. 21: 215-220. https://doi.org/10.1177/1933719113492209; PMid:23744883 PMCid:PMC3879989

Knight M, Nair M, Tuffnell D et al. (2017). Saving Lives, Improving Mothers' Care - Lessons Learned to Inform Maternity Care from the UK and Ireland Confidential Enquiries into Maternal Deaths and Morbidity 2013-15, National Perinatal Epidemiology Unit, University of Oxford. Oxford.

Kocarslan S, Incebıyık A, Guldur ME, Ekinci T, Ozardali HI. (2015). What is the role of matrix metalloproteinase-2 in placenta percreta? Journal of Obstetrics and Gynaecology Research. 41(7): 1018-1022. https://doi.org/10.1111/jog.12667; PMid:25656855

Laban M, Ibrahim EA-S, Elsafty MSE, Hassanin AS. (2014). Placenta accreta is associated with decreased decidual natural killer (dNK) cells population: a comparative pilot study. European Journal of Obstetrics & and Reproductive Biology. 181: 284-288. https://doi.org/10.1016/j.ejogrb.2014.08.015; PMid:25195203

Laursen LS, Kjaer-Sorensen K, Andersen MH, Oxvig C. (2007). Regulation of insulin-like growth factor (IGF) bioactivity by sequential proteolytic cleavage of IGF binding protein- and -5. Molecular Endocrinology. 21(5): 1246-1257. https://doi.org/10.1210/me.2006-0522; PMid:17312271

Lawrence JB, Oxvig C, Overgaard MT et al. (1999). The insulinlike growth factor (IGF)-dependent IGF binding protein-4 protease secreted by human fibroblasts is pregnancyassociated plasma protein-A. Proceedings of the National Academy of Sciences of the United States of America. 96(6): 3149-3153. https://doi.org/10.1073/pnas.96.6.3149; PMid:10077652 PMCid:PMC15910

Li J, Zhang N, Zhang Y, Hu X, Gao G, Ye Y et al. (2019). Human placental lactogen mRNA in maternal plasma play a role in prenatal diagnosis of abnormally invasive placenta: Yes or no? Gynecol. Endocrinol. 35: 631-634. https://doi.org/10.1080/09513590.2019.1576607; PMid:30784325

Li R, Wang W, Qiu X, He M, Tang X, Zhong M. (2023). Periostin promotes extensive neovascularization in placenta accreta spectrum disorders via Notch signaling. J. Matern.-Fetal Neonatal Med. 36: 2264447. https://doi.org/10.1080/14767058.2023.2264447; PMid:37806775

Lin T-M, Halbert SP, Kiefer D, Spellacy WN, Gall S. (1974). Characterization of four human pregnancy-associated plasma proteins. American Journal of Obstetrics & Gynecology. 118(2): 223-236. https://doi.org/10.1016/0002-9378(74)90553-5; PMid:4129188

Liu DF, Dickerman LH, Redline RW. (1999). Pathologic findings in pregnancies with unexplained increases in midtrimester maternal serum human chorionic gonadotropin levels. American Journal of Clinical Pathology. 111(2): 209-215. https://doi.org/10.1093/ajcp/111.2.209; PMid:9930142

Liu M, Su C, Zhu L, Dong F, Shu H, Zhang H et al. (2023). Highly expressed FYN promotes the progression of placenta accreta by activating STAT3, p38, and JNK signaling pathways. Acta Histochem. 125: 151991. https://doi.org/10.1016/j.acthis.2022.151991; PMid:36563468

Liu X, Wang Y. Wu Y, Zeng J, Yuan X, Tong C, Qi H. (2021). What we know about placenta accreta spectrum (PAS). Eur. J. Obstet. Gynecol. Reprod. Biol. 259: 81-89. https://doi.org/10.1016/j.ejogrb.2021.02.001; PMid:33601317

Long Y, Chen Y, Fu XQ, Yang F, Chen ZW, Mo GL et al. (2019). Research on the expression of MRNA-518b in the pathogenesis of placenta accreta. Eur. Rev. Med. Pharmacol. Sci. 23: 23-28.

Long Y, Jiang Y, Zeng J, Dang Y, Chen Y, Lin J et al. (2020). The expression and biological function of chemokine CXCL12 and receptor CXCR4/CXCR7 in placenta accreta spectrum disorders. J. Cell. Mol. Med. 24: 3167-3182. https://doi.org/10.1111/jcmm.14990; PMid:31991051 PMCid:PMC7077540

Lo YM, Corbetta N, Chamberlain PF et al. (1997). Presence of fetal DNA in maternal plasma and serum. The Lancet. 350(9076): 485-487. https://doi.org/10.1016/S0140-6736(97)02174-0; PMid:9274585

Lumbanraja S, Yaznil MR, Siahaan AM, Berry Eka Parda B. (2022). Soluble FMS-Like Tyrosine Kinase-1: Role in placenta accreta spectrum disorder. F1000Research. 10: 618. https://doi.org/10.12688/f1000research.54719.4; PMCid:PMC9478500

Lyell DJ, Faucett AM, Baer RJ, Blumenfeld YJ, Druzin ML, El-Sayed YY et al. (2015, Aug). Maternal serum markers, characteristics and morbidly adherent placenta in women with previa. J Perinatol. 35(8): 570-574. Epub 2015 Apr 30. https://doi.org/10.1038/jp.2015.40; PMid:25927270

Markfeld Erol F, Hausler JA, Medl M, Juhasz-Boess I, Kunze M. (2024). Placenta Accreta Spectrum (PAS): Diagnosis, Clinical Presentation, Therapeutic Approaches, and Clinical Outcomes. Medicina. 60: 1180. https://doi.org/10.3390/medicina60071180; PMid:39064609 PMCid:PMC11278763

Maron JL, Bianchi DW. (2007). Prenatal diagnosis using cell-free nucleic acids in maternal body fluids: a decade of progress. American Journal of Medical Genetics Part C, Seminars in Medical Genetics. 145C(1): 5-17. https://doi.org/10.1002/ajmg.c.30115; PMid:17299735

Marshall NE, Fu R, Guise JM. (2011). Impact of multiple cesarean deliveries on maternal morbidity: A systematic review. Am. J.Obstet. Gynecol. 205: 262.e1-262.e8. https://doi.org/10.1016/j.ajog.2011.06.035; PMid:22071057

Mattick JS, Amaral PP, Carninci P, Carpenter S, Chang HY, Chen L-L et al. (2023). Long non-coding RNAs: Definitions, functions, challenges and recommendations. Nat. Rev. Mol. Cell Biol. 24: 430-447. https://doi.org/10.1038/s41580-022-00566-8; PMid:36596869 PMCid:PMC10213152

Mizejewski GJ. (2001). Alpha-fetoprotein structure and function: relevance to isoforms, epitopes, and conformational variants. Experimental Biology and Medicine. 226(5): 377-408. https://doi.org/10.1177/153537020122600503; PMid:11393167

Mizejewski GJ. (2007). Physiology of alpha-fetoprotein as a biomarker for perinatal distress: relevance to adverse pregnancy outcome. Experimental Biology and Medicine. 232(8): 993-1004. https://doi.org/10.3181/0612-MR-291; PMid:17720945

Monteiro LJ, Penailillo R, Sánchez M, Acuna-Gallardo S, Monckeberg M, Ong J et al. (2021). The Role of Long Non-Coding RNAs in Trophoblast Regulation in Preeclampsia and Intrauterine Growth Restriction. Genes. 12: 970. https://doi.org/10.3390/genes12070970; PMid:34201957 PMCid:PMC8305149

Murrieta-Coxca JM, Barth E, Fuentes-Zacarias P, Gutiérrez-Samudio RN, Groten T, Gellhaus A et al. (2023). Identification of altered miRNAs and their targets in placenta accreta. Front. Endocrinol. 14: 1021640. https://doi.org/10.3389/fendo.2023.1021640; PMid:36936174 PMCid:PMC10022468

NCBI. (2018, Feb). Entrez gene: PAPPA pregnancy-associated plasma protein A, pappalysin 1. URL: https://www.ncbi.nlm.nih.govgene?Db=gene&Cmd=ShowDetailView&TermToSearch=5069.

Ng EK, Tsui NB, Lau TK et al. (2003). mRNA of placental origin is readily detectable in maternal plasma. Proceedings of the National Academy of Sciences of the United States of America. 100(8): 4748-4753. https://doi.org/10.1073/pnas.0637450100; PMid:12644709 PMCid:PMC153627

O'Brien JM, Barton JR, Donaldson ES. (1996). The management of placenta percreta: conservative and operative strategies. American Journal of Obstetrics & Gynecology. 175(6): 1632-1638. https://doi.org/10.1016/S0002-9378(96)70117-5; PMid:8987952

Oztas E, Ozler S, Caglar AT, Yucel A. (2016). Analysis of first and second trimester maternal serum analytes for the prediction of morbidly adherent placenta requiring hysterectomy. Kaohsiung J. Med. Sci. 32: 579-585. https://doi.org/10.1016/j.kjms.2016.08.011; PMid:27847101

Penzhoyan GA, Makukhina TB. (2019). Significance of the routin first-trimester antenatal screening program for aneuploidy in the assessment of the risk of placenta accreta spectrum disorders. J. Perinat. Med. 48: 21-26. https://doi.org/10.1515/jpm-2019-0261; PMid:31730533

Pinas Carrillo A, Chandraharan E. (2019). Placenta accreta spectrum: Risk factors, diagnosis and management with special reference to the Triple P procedure. Women's Health. 15: 1745506519878081. https://doi.org/10.1177/1745506519878081; PMid:31578123 PMCid:PMC6777059

Romeo V, Verde F, Sarno L, Migliorini S, Petretta M, Mainenti PP et al. (2021). Prediction of placenta accreta spectrum in patients with placenta previa using clinical risk factors, ultrasound and magnetic resonance imaging findings. La Radiol. Medica. 126: 1216-1225. https://doi.org/10.1007/s11547-021-01348-6; PMid:34156592

Samuel A, Bonanno C, Oliphant A, Batey A, Wright JD. (2013). Fraction of cell-free fetal DNA in the maternal serum as a predictor of abnormal placental invasion-a pilot study. Prenatal Diagnosis. 33(11): 1050-1053. https://doi.org/10.1002/pd.4195; PMid:23836321

Schwickert A, Chantraine F, Ehrlich L, Henrich W, Muallem MZ, Nonnenmacher A et al. (2021). Maternal Serum VEGF Predicts Abnormally Invasive Placenta Better than NT-proBNP: A Multicenter Case-Control Study. Reprod.Sci. 28: 361-370. https://doi.org/10.1007/s43032-020-00319-y; PMid:33025531 PMCid:PMC7808970

Sekizawa A, Jimbo M, Saito H et al. (2002). Increased cell-free fetal DNA in plasma of two women with invasive placenta. Clinical Chemistry. 48(2): 353-354. https://doi.org/10.1093/clinchem/48.2.353; PMid:11805017

Silahtaroglu AN, Tumer Z, Kristensen T, Sottrup-Jensen L, Tommerup N. (1993). Assignment of the human gene for pregnancy-associated plasma protein A (PAPPA) to 9q33.1 by fluorescence in situ hybridization to mitotic and meiotic chromosomes. Cytogenetics and Cell Genetics. 62(4): 214-216. https://doi.org/10.1159/000133479; PMid:7679961

Silver RM, Barbour KD. (2015). Placenta accreta spectrum: accreta, increta, and percreta. Obstetrics and Gynecology Clinics of North America. 42(2): 381-402. https://doi.org/10.1016/j.ogc.2015.01.014; PMid:26002174

Shainker SA, Silver RM, Modest AM, Hacker MR, Hecht JL, Salahuddin S et al. (2020). Placenta accreta spectrum: Biomarker discovery using plasma proteomics. Am. J. Obstet. Gynecol. 223: 433.e1-433.e14. https://doi.org/10.1016/j.ajog.2020.03.019; PMid:32199927

Shih JC, Lin HH, Hsiao AC, Su YT, Tsai S, Chien CL, Kung HN. (2019). Unveiling the role of microRNA-7 in linkingTGF-β-Smad-mediated epithelial-mesenchymal transition with negative regulation of trophoblast invasion. FASEB J. 33: 6281-6295. https://doi.org/10.1096/fj.201801898RR; PMid:30789794

Shi Q, Lei Z, Rao CV, Lin J. (1993). Novel role of human chorionic gonadotropin in differentiation of human cytotro- phoblasts. Endocrinology. 132(3): 1387-1395. https://doi.org/10.1210/endo.132.3.7679981; PMid:7679981

Tantbirojn P, Crum CP, Parast MM. (2008). Pathophysiology of Placenta Creta: The Role of Decidua and Extravillous Trophoblast. Placenta. 29: 639-645. https://doi.org/10.1016/j.placenta.2008.04.008; PMid:18514815

Thompson O, Ogbah C, Nnochiri A, Sumithran E, Spencer K. (2015). First trimester maternal serum biochemical markers of aneuploidy in pregnancies with abnormally invasive placentation. BJOG: An International Journal of Obstetrics and Gynaecology. 122(10): 1370-1376. https://doi.org/10.1111/1471-0528.13298; PMid:25639820

Tul N, Tul N, Pušenjak S, Osredkar J, Spencer K, Novak-Antolič Ž. (2003). Predicting complications of pregnancy with first-trimester maternal serum free-βhCG, PAPP-A and inhibin-A. Prenatal Diagnosis. 23(12): 990-996. https://doi.org/10.1002/pd.735; PMid:14663836

Waller DK, Lustig LS, Smith AH, Hook EB. (1993). Alphafetoprotein: a biomarker for pregnancy outcome. Epidemiology. 4(5): 471-476. https://doi.org/10.1097/00001648-199309000-00014; PMid:7691189

Wang R, Liu W, Zhao J, Liu L, Li S, Duan Y, Huo Y. (2023). Overexpressed LAMC2 promotes trophoblast over-invasion through the PI3K/Akt/MMP2/9 pathway in placenta accreta spectrum. J. Obstet. Gynaecol. Res. 49: 548-559. https://doi.org/10.1111/jog.15493; PMid:36412218

Wang R, Zhao J, Liu C, Li S, Liu W, Cao Q. (2023). Decreased AGGF1 facilitates the progression of placenta accreta spectrum via mediating the P53 signaling pathway under the regulation of miR-1296-5p. Reprod. Biol. 23: 100735. https://doi.org/10.1016/j.repbio.2023.100735; PMid:36753931

Xie L, Sadovsky Y. (2016). The function of miR-519d in cell migration, invasion, and proliferation suggests a role in early placentation. Placenta. 48: 34-37. https://doi.org/10.1016/j.placenta.2016.10.004; PMid:27871470 PMCid:PMC5130096

Ye J, Zhang J, Mikolajczyk R, Torloni MR, Gulmezoglu AM, Betran AP. (2016). Association between rates of caesarean section and maternal and neonatal mortality in the 21st century: A worldwide population-based ecological study with longitudinal data. BJOG Int. J. Obstet. Gynaecol. 123: 745-753. https://doi.org/10.1111/1471-0528.13592; PMid:26331389 PMCid:PMC5014131

Zhang F, Gu M, Chen P; Wan S, Zhou Q, Lu Y, Li L. (2022). Distinguishing placenta accreta from placenta previa via maternal plasma levels of sFlt-1 and PLGF and the sFlt-1/PLGF ratio. Placenta. 124: 48-54. https://doi.org/10.1016/j.placenta.2022.05.009; PMid:35635854

Zhang T, Wang S. (2022). Potential Serum Biomarkers in Prenatal Diagnosis of Placenta Accreta Spectrum. Front. Med. 9: 860186. https://doi.org/10.3389/fmed.2022.860186; PMid:35712096 PMCid:PMC9196238

Zheng W, Zhang H, Ma J, Dou R, Zhao X et al. (2022). Validation of a scoring system for prediction of obstetric complications in placenta accreta spectrum disorders. J. Matern.-Fetal Neonatal Med. 35: 4149-4155. https://doi.org/10.1080/14767058.2020.1847077; PMid:33685330

Zhou J, Li J, Yan P, Ye YH, Peng W, Wang S, Wang XT. (2014). Maternal plasma levels of cell-free β-HCG mRNA as a prenatal diagnostic indicator of placenta accrete. Placenta. 35: 691-695. https://doi.org/10.1016/j.placenta.2014.07.007; PMid:25063251

Zhu JY, Pang ZJ, Yu YH. (2012). Regulation of trophoblast invasion: the role of matrix metalloproteinases. Reviews in Obstetrics & Gynecology. 5(3-4): e137-e143.

Zelop C, Nadel A, Frigoletto FD Jr, Pauker S, MacMillan M, Benacerraf BR. (1992). Placenta accreta/percreta/increta: a cause of elevated maternal serum alpha-fetoprotein.Obstetrics and Gynecology. 80(4): 693-694.

Published

2025-03-05